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SUMMARY

A numerical method 1s developed for the minimization of deviations of real tooth surfaces from
the theoretical ones. The deviations are caused by errors of manufacturing. errors of installment of
machine-tool settings and distortion of surfaces by heat-treutment. The deviations are determined
L coordinate measurements of gear tooth surfaces. The minimization of deviatione ;s based on the
proper correciion of itially applied rachine-tool settings.

The contents of accomplished research project cover the following topics:

(1) Descripticn of the principie of coordinate measurements of gear tooth surfaces.

(1i) Derivation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and refer-

envos for spiral bevel gears).
(i) Netermination of the reference point end the grid.
(iv) Determination of deviatior: of real tooth surfaces at the points of the grid.

(v) Determination of required corrections of machine-too! settings for minimization of deviations.

The procedure for minimization of deviations is based on numerical solution of an overdeter-
mined system of n linear equations in m unknowns (m - n), where n is the number of points of
measurements and m is the number of parame.ers of applied machine-tool settings to be corrected.

The developed approach is illustrated with numerical examples.




ClIAPTER 1

INTRODUCTION

The development of computer controlled machines has opened new opportunities for high precision
generation of double-curvatured surfaces—gear tooth surfaces, surfaces of rotors, propellers, screws,
etc. However. these opportunities can only be realized if the surface generation is complemented

with coordinate measurements of the manufactured surfaces. Such measurements allow one to:

(1) ldentifv the real machine-tool settings and correct them if necessary {important for generation

of master gears of high precision);

(i1) Determine the deviations of the real surface from the theoretical one, and minimize the

deviations by correction of the initially applied machine-tool settings.

In the second case there are many factors that cause the deviations: (a) distortion of the surface
by heat-treatment, (b) errors c~used by deflection in the process of manufacturing, (c) errors of
instaliment of machine-tool settings, etc. Measuring the prototype of the surface (for instance, the
first gear of the heing manufactured set), we can determine the deviations at n measuring points
and then minimize the deviations by controlling m < n parameters of machine-tool settings.

The Gleason Woerks (USA), Oerlikon (Switzerland), Caterpillar (USA), and the Ingersoll Milling
Machine Company (USA), and other Companies are pioneers in the development of computer

controlled machine for the generation of spiral bevel gears, hypoid gears, spur gears, helical gears,




and other objects. The Gleason Works engineers have developed an automated svstem and the G-
AGE program for the automatic evaluation of real gear tooth surfaces that is based on measurements
taken by using the Zeiss machine (Gleason Works, 1987) but without presenting the mathematical
description of the procedure '1,. The Caterpillar engineers have developed their own machine for
coordinate measurements and have used it for the evaluation and correction of real gear tooth
surfaces (Chambers and Brown, 1987) but without presenting the algorithm and analvtical method
that they used in the measurement procedure for spiral bevel gears [2]. It can be expected that
coordinate measurement of complicated surfaces will find wide application in industry.

The report covers the following topics:

(1) Determination of machine-tool settings for a real surface. Here it is assumed that the devia-
tions of the real surface form the theoretical one are caused only by the errors of machine-tool
settings. The proposed approach allows the required corrections of machine-tool setting to
be determined based on the data of coordinate measurements. The solution to this problem

is significant for generation of master-gears of high precision.

(2) Determination of corrections of machine-tool settings for a real surface with irregular devia-
tions. Such deviations can be caused by heat-treatment, deflection in the course of manufac-
turing, and other factors. The proposed approach assumes that the manufacturing process
provides repeatable surface deviations due to stable conditions of gear manufacturing and
heat treatment and allow the deviations to be minimized by appropriate corrections to the

machine-tool settings.

The proposed approaches cover the solutions to the above-mentioned problems and are illus-

trated by numerical examples for hvpoid pinion and gear tooth surfaces.




The contents of the report is divided into two parts:

1. General Theory

In part I, the successful application of coordinate measurements needs the following proce-

dures :

(1) Analytical or numerical representation in the 3D space of the theoretical surface and the
equidistant surface where the center of the probe is located in the process of measure-

ments.
(i1) Determination of the grid where the center of the probe must be located.
(iii) A certain point on the theoretical surface must be chosen as the reference point.

(iv) Determination of deviations of the real tooth surface from the theoretical one that are

measured along the common normal to both surfaces.

(v) Minimization of deviations of the real surface by correction of previously applied machine-

tool settings.

I1I. Application to Coordinate Measurements of Hypoid Pintons and Gears.




Part 1

GENERAL THEORY




CHAPTER 2

REPRESENTATION OF A THEORETICAL SURFACES

Henceforth, we will consider four surfaces: (i) £-the theoretical tooth surface, (ii) Z.)-the surface
that is equidistant to ¥ and might be traced out by the probe center if the deviations are equal to
zero, (iii) L —the real tooth surface, and (iv) E(u)—the surface that is traced out by the probe center
when the real surface is measured. The subscript for symbols ¥,%,,,,X* and 2(*(‘,) (for instance
L. m) indicates in which coordinate system (S,, for designation (., ) the surface is represented.

We consider that a theoretical surface ¥, is represented analytically in a coordinate system S

that is rigidly connected to L;. Two types of representation arise:

(i) in two-parametric form by a vector function

ro(u,0) (2.1)

and (it) in three-parametric form with related parameters.

ri(u, 6, 0) (2.2)

flu,8,6) =0 (2.3)




Equations (2.2) and (2.3) represent X, as the envelope to the family of tool surfaces, ¥4, hat
is generated in coordinate system S; by the tool surface in its relative motion with respect to the
being-generated gear. Parameters (u.#) in expressions (2.2) and (2.3) are the Gaussian coordinates
(surface coordinates) of the tool; ¢ is the generalized parameter of motion. Equation (2.3) is the
equation of meshing (Litvin, 1989) [3]. In the case where the tool surface is a ruled developable
surface, for example a cvlindrical involute surface, a screw involute surface, or a cone, the equation
of meshing is linear in one of the surface parameters and it is easy to represent the generated surface
directly in a two-parametric form.

Henceforth, we will consider that the theoretical surface is represented in two-parametric form

as follows.

Br, 81‘,

re(u.0:d))eC? (j=1,....,m); wbeE; —— x = #0 (2.4)

The designation ('* means that the vector function has continuous derivatives for all arguments
at least to the second order. The Gaussian coordinates are designated by u and 4, and E is the
area of u and 6. The inequality in (2.4) indicates that X is a regular surface. The designation
dy (j=1..... m) indicates constant parameters—the so-called machine-tool settings.

To illustrate d; we consider the case of generation of a formate cut hypoid gear (Fig. 2.1). The
generating surface is a cone with Gaussian coordinates u and # (Fig. 2.2). The installation of
the cone with respect to the cradle is determined with two parameters, H2 and 1% (Fig. 2.3). The
installation of the gear in the plane y. = 0 is determined with the parameters AX,, and 4,,. Here:

/32X, represents the location of the crossing point, O, with respect to the machine center, O;







o
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Figure 2.2: Generating Cones




Figure 2.3: Machine-Tool Settings For Formate Cut Gear
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and 3,, determines the orientation of gear axis z; in the process of generation. These parameters,
Hy 15.AX,, and 7,,, are the machine-tool settings, d;. 1t is assumed that the parameters d; can
be varied to minimize the deviations of the real tooth surface to the theoretical one.

In addition to expression (2.4) we will also need a parametric representation of a surface %,

that is equidistant to the theoretical surface £,. Such a surface is represented by:

l,(u@) - /\n,(u,(?) (/\ = 0) (25)
Here:
Nf 81'1 arf
8y = ; = X =< 2.6
n,(u.6) N, N ou B8 0 (2.6)

where N, is the vector of surface normal; n; is the unit normal; and A is a scalar that determine
the distance between the two surfaces that is measured along the normal.
Examples of derivation of surfaces of spiral bevel gears have been represented in the works: F.L.

Litvin ;3 F.L. Litvin and Y. Zhang [4], and R.F Handschuh and F.L. Litvin [5].




CHAPTER 3

PRINCIPLE OF COORDINATE MEASUREMENT

The machine for coordinate measurements (CMM) usually has four or more degrees of freedom. For
instance, the Zeiss machine used by the Gleason Works has four degrees of freedom, one rotational
and three translational motions [1]. The three computer controlled tr.rslational motions of the
probe are performed in three mutually-perpendicular directicns during the process of measurements.
The probe tip is a changeable ball whose diameter can be chosen from a wide range, according to
the specifications of the surfaces to be measured. In the Zeiss machine, the rotational motion is
performed by a rotary table whose axis coincides wich the axis of the wor¥niece and can be rotated
together with the workpiece being measured.

Henceforth, we will consider that a coordinate system S--{Zm ,¥r.,%m ) is rigidly connected to the
computer controlled 3-dimensional coordinate measuring machine (CMM) and z,, coincides with
the axis of the gear and pinion (Fig. 3.1). The axis of the probe may be installed parallel to z,,
(Fig. 3.1.a) or perpendicular to 5, (Fig. 3.1.b}, depending on the design of the workpiece and the
surface (for instance, depending on the pitch cone angle of the gear or the pinion). The back face
of the workpiece, which is perpendicular to its axis and is finished to high precision, is installed
flush with the base plane of the CMM. The crigir: of the coordinate system Sy, can be located in
the base plane or is related with it.

A Coordinate system Se(z,y:,2¢) is rigidly connected to the being measured gear. In some

12




(a) = 'Zm A Probe

Gear
E Om | \t} Y'L..

Backface-Base Plane 4

I \ Rotary Table

\

(b’ 2z 2. ‘
Pinion Probe
O v
o

Backface-Base Plane / }

N

L\\ Rotary Table

Figure 3.1: Surface M2asuremert of a Gear and Pinion
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cases we mayv assume that the origin Oy coincide with O,,.. Thus, the two coordinate systems 5,,
ard 5; can be brought into alignment onlv by the rotation of the rotary table. In the most general
case, the orientation and location of S, respest to 5, are determined with two p.rameters é and [
(Fig. 3.2). We will consider that parameter [ is known frorm the installments and parameter ¢ is
determined by using the procedure of computation described below (in chapter 4).

In order to align the coordinate system of tooth surface 5y with the CMM coordinate system 5,,,.

VO {0 i . .
a reference pomt. sav (2, 4o, .2 ) on the theoretical tooth surface, sav ¥, |, must be specified.

The coordinates (.\’,‘,(,)‘. Yo .4,,(,)) of the probe center, which correspond to (.1",,?'~ y‘;,(l)'. :i,?') can be
determined knowing the radius of the probe and the normel to the surface by using equation (2.5).
For the initial installment of the tooth surface, the probe center is placed at (X,(,?).)}af);. Z,(,?'), and
the tooth surface 1s brought into contact with the probe by turning the rotary table. Therefore.
the touth surface s fixed in the process of measurements and the probe perfurms measurements by
translational motion. The displacemewt of the probe center in the r,, .y, and z,, axis directions
represent its displacements from the initial position.

The measurement data provide the coordinates, ((X\7.Y 7. 2"} of the probe center. which traces
cut in reality an equidistant surface. sav X7 to the real tooth surface. say £ in the process of
measurement

Knowing the initial and current positions of the probe center, we can determine the surface
deviations based on the change of position of the center of the probe in the process of measurements.
CMAI Calibration:

Calibraticn of the CMNM for a chosen probe ball can be accomplished using a calibratio. ring
(Fig 3.3). The initial coordinates of the center of the ball are:

Y20 = R a0 f (3.1)

T
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Tm - s

1 _--;
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\ &
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Figure 3.2. Orientation of CMM Coordinate System Sy, and Workpiece Fixed Coordinate System
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(0)
Xm

e

—=

Ym

Calibration Ring

Figure 3.3: Calibration of CMM for Measurements Using a Calibration Ring




Here R is the radius of the calibration ring and a is the radius of the ball. At the initial position,
the probe ball is in contact with the calibration ring. The y,, = 0 alignment can be achieved if the
same displacement Az,, of the probe corresponds to +Ay,, displacements. The value of f can be

obtained by independent measurement.
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CHAPTER 4

THE GRID AND REFERENCE POINT

4.1 The Grid

The grid (Fig. 4.1) is a set of points on the theoretical surface ¥, that are chosen as points of
contact between the tooth surface and the probe [6]. Figure 4.2 shows the grid on the surface of a
spiral bevel gear.

(1). In accordance tc the practice of measurements a set of 45 points is usually chosen for the
measurements that are located in nine longitudinal cross-sections of the gear and pinion surface
with five points in each cross-section (Fig. 4.2).

(2). Consider that the theoretical surface ¥, is represented in two-para.netric form by the vector
function ry(u.0). Then the Gaussian coordinates for the grid points can be determined based on

the following considerations.
2(u,8) = ¢
1',2(11,0) + y,z(u,O) = p?j } (4.1)

Here: c; is the constant that determines the Jocation of the chosen cross-section; p;; determines the

shortest distance of the chosen point of the surface from the axis of the gear.

18




Figure 4.1: Grid on Theoretical Surface £,

Yt




Grid on a Spiral Bevel Gear

Figure 1.2: Surface
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point (3,3) (Mean Point)

Near to Topland

Figure 4.3 Definition of Points onl the Measurement Grids
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We can determine the Cartesian coordirates and curvilinear coordinates (u,8) for n = 7 x
points of measurements.

(3). The theoretical coordinates of the probe center for each grid point is determined by
considering that the probe center will lie on a surface ¥, that is equidistant from ¥;. The follov;ring

vector equation determines these coordinates in system 5.

py = re(u.0) + any(u.8) (4.2)

where a is the radius of the ball surface of the probe. Equations (4.2) represent in S; the surface

that might be traced out by the center of the probe if the surface deviations are equal to zero.

4.2 Reference Point

One of the grid points (usually the center one, i.e., mean point) is chosen as the reference point
(Fig. 4.3). This point is used to install the gear on the CMM and to obtain the value of ¢ that is
needed to represent the coordinates of the grid points in 5,,. The CMM is provided with a rotary
table that allows the gear to be rotated to an initial position with respect to the probe.

We consider that the gear is installed with its back-face flush against the base plane of the
CMM such that the O,, coincides with the Oy and the parameter [ = 0 is known (Fig. 3.2). The
rotational alignment of the gear and the value of § can be obtained based on following two steps.
Step (i): the probe is brought into contact with the point on the real surface that is closest to the
chosen reference point.

Step (ii): the parameter ¢ is determined based on coordinate measurements at this point.

We assume that the real surface deviations from the theoretical one and that we would like the

22




probe to contact with the real surface at the point closest to the chosen reference point. Assuming
that the variation in surface normal will be small, the measured coordinates (X,‘no), "1$LO), Z,(,?)) of

the probe center can represented by using the following matrix equation (Fig. 3.2).

RO = [Muilp)” (4.3)

cosd siné 0 O

. —siné cosé O O
[A'Imﬂ - 0 0 10 (4.4)

0 0 01

Then we obtain
X0 = (X! 4 bng)cosé + (¥, + bny)sin 4.5
t u

V9 = (X9 + bng)siné + (1'% + bnyy) cos é (4.6)
z® = 7% + bn,y (4.7)

Here: (pﬁg):[,’(,(o),}",(o), Z,(O)] ) are coordinates of the point equidistant from the chosen reference
point as given by (4.2); (nzt, 1y, n,¢) are the components of the theoretical surface normal in S, at
the chosen reference point; § is the parameter of orientation; and b is the normal-direction deviation

of the real surface from the theoretical surface at the chosen reference point.

23




Together, equations (4.5-4.7) represent a system of 3 equatiions in 5 unknowns, X:,?), Y,(no), Z,(,?), 6
and b, that can not be solved uniquely. To obtain a solution we assume that at reference point
b = 0, and for convenience we chocse Y;) = 0. Then equation (4.7) can be solved for z% = Z,(O)

and from equations (4.5) and (4.6) we can derive the following relation for X that does not

depend on §.

X0 = (X100 1 (2 (4.8)

After solving (4.8) for X,(,?),é can be determined from the following relation that can be derived

from equations (4.5) and (4.6) considering that W = =o0.

(0 (0 0) (0
N € ) G A G 7
2 }'}(O)X,(,?)

(4.9)

Based on the above considerations, rotational alignment of the gear can be obtained as follows:
~(0)

(1) install the probe with coordinates (X,(,?),),,L , f,?)) that have been determined as described

above;

(i1) turn the rotary table until the probe contact the to-be measured surface. The value of § for

this installation is given by equation (4.9).
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Process of Measurements

With the parameters é and [ determined, matrix equation that is similar to (4.3) can be used to
find the S,,-system coordinates , X,,,Y,., Z,., of the theoretical probe center for each grid point.

In the process of measurement, the probe center is controlled by the CMM to keep two measured
coordinates, say (X,.Y,;) as close to the coordinates (X,,, Y;) of the chosen grid point as possible.
The third measured coordinate Z;, will differ from Z,, if the real tooth surface deviates from

theoreticul one.
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CHAPTER 5

DETERMINATION OF REAL MACHINE-TOOL SETTINGS

5.1 Initial Considerations

The determination of real machine-tool settings is for the case when surface deviations are caused
only by errors in the installment of machine-tool settings. It is especially important for the gener-
ation of a master gear-a gear that is used as a model for the evaluation of manufactured gears. In
this section we use the deviations determined bv cocrdinate measurements to determinc the real
machine-tool settings and then to correct the installment of machine-tool settings.

In addition to the real machine-tool settings, we consider the parameters é and ! (Fig. 3.2) as
unknowns.

The imaginary surface %, that is equidistant to the theoretical surface I is represented in 5;

by (see equations 4.2):

Xt = 2(u,8;d;) + ange(u, 0, d;) = A(u,0;d;)

Yy = yi(u, 0;d;) + any(u, 8;d;) = B(u,6;d;) (5.1)

Zy = z(u,0;d;) + anze(u, 0, d;) = C(u,0;d;)
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Here: a is the radius of the probe sphere; A, B and C represent the resulting functions; and
d; (j = 1....,m) are the to-be-determined real machine-tool settings that have been applied in
the process of generation.

Basic Equations

The determination of the real machine-tool settings is based on the following procedure.
Step 1. The coordinate transformation from S; to S,, which is rigidly connected to the coordinate

measuring machine is based on the matrix equation:

r(r:)nt = {A‘jﬂlf‘}l-u:)f (52)

where 11,/ is represented by equation (4.4).

Considering that the measured coordinates of t' e probe center (X, .2). 2}

T

) coincide with

coordinates (.\,,. Y7, Zn, ) on the theoretical equidistant surface ¥, represented in 5, we have

“y- - T Ty - * T -
f\m }ru Zm} = (<Y qy }m Zvn, (33)

Equations (5.1), (5.2) and (5.3) vield
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X, = Yu.b:dj)cosé + B(u.b:d;)siné

T

Yoo = —A(u.8;d;)siné + B(u.6;:d;)cosé (5.4)

T

Zy o= Club:djy + 1

T

Step 2. Our goal is to derive equations that are invariant with respec. to the parameters é and .

Equation (5.4) vield

A GRS M Ag(u,ﬂ:dl) -~ Bg(u,H:dj) (5.5)

‘Y

¢ A(4-X;)- B(B-1Y;)

tan§ = : (5.6)

BX; — AY,

m

I+, also evident that

=2,

™m

~ ((u.8;d;) (5.7)

Step 3. Henceforth we will drop the subscript m indicating that the coordinates of a point are
represented in coordinate system S,,. We will designate with g the numbe¢r of measurement points
and with subscript p the index of a measured point. Based on equations (5 5), (5.6) and (5.7), we

obtain the following systemn of equations that is used for determination of the real machine-tool




settings.

2 2

th'l - ¥ =4 (up. by dj) ~ QQ(“’pwgP?dj) p=1,...,9) (5.8)

Ap(Ay = )+ Bp(Bp - ¥)) _ <374 1{(Aps1 - ‘Y;+1) + Bpii( By - Y;Ll)

P h LA ! - 5.9

BI“\; - fip)vp' B71+1‘X;~] - ‘4])*1)";;;4 ( )
(lepig-1)

Zi 7y Cluganprids) = ClupByids)  (12pg—1) (510)

Using the results of n.~asurements for ¢ points on the surface we obtain (27 - 2) e.» . ‘ons (5.8)
(5.9) and (5.10) in: (i) 2¢ unknown surface coordinates (up,6,); and (ii) m unknown machine-tool

settings d; (j = 1...., m . Thus, to determine m unknown machine-tool settings we need:

g=m-=2; k=3¢g-2=3m~+4 (5.11)

where g is the number of surface measurements and k is the number of nonlinear equations that
have to he solved. Parameters é and [ of orientation and location of coordinate system S, with
respect to Sy, (Fig. 3.2). can be determined from equations (5.6) and (5.7).

In the case when the gear and the pinion are installed flush against the base plane of the CMM

we cain take [ = 0 (the origin Oy coincides with 0,,,), and use the equ .tion:
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Z: = Cluy, 8,;d;) (5.12)

I

in place of equation (5.10). For this case, the coordinate measurements of g points on the real
surface, results in (3g — 1) equation (5.8), (5.9) and (5.12), in 2¢g unknown surface coordinates
(up.6,), and m unknown machine-tool settings d; (j = 1,...,m). To determine the m unknown

machine-tool settings we need

g=m+1 k=3g-1=3m+2 (5.13)

5.2 Computational Procedure

The numerical solution of a large system of nonlinear equations is a complicated problem. For the
case where | # 0 and m = 4, the number of equations to be solved is k = 16. The system of
nonlinear equations can be solved using computer software such as the IMSL subroutine DNEQNF
(7,. However, the successful application of this program requires a good first guess— an initial set of
unknowns that is used for the first iteration. We propose a solution procedure that begins with a
system of four equations using the measurements for only two points on the surface. The number
of equations, k = 4, and the number of mecasurements, g = 2, can be obtained from equation (5.11)
considering that m = 0. This means that for the hrst step, errors in the machine-tool settings are

neglected - the machine-tool variables d;,d,,...,d,, in equation (5.8), (5.9) and (5.10) are set to

30




: )
the nominal values d(lo“, dg,o' i

Step 1. An initial guess for the system of 4 equations is obtained as follows: (i) an approximate
value for [ is determined by measurements, then (ii) neglecting the errors of machine-tool settings,
approximate values for the surface coordinates of two measured points are determined using the

following equations.

Clup,b,) =2, -1 (p=1.2) (5.14)

A¥(up,0,) + BYup.6,) = X3P = Y2 (p=1,2) (5.15)

Step 2. Knowing the approximate values of (u.f) for the two points of measurement, we then

obtain more precise solutions for surface coordinates using th system of four equations:

A (uy, 1) + B*(uy,6,) = X;2 + ¥2 (5.16)
A%(ug,02) + B*(ug.0:) = X352 + Y2 (5.17)
(YQ(UQ,QQ) - ('1(111,01) = Z; - Z; (518)
,41(441 - 1\’;) -+ B1(B1 - Yf) _ Az(Az - X{) + Bg(Bz - Y{) (5 19)
B]Xl* - ‘41)’1’ Bz.X; - Ag)'rz* '

obtained from equation (5.8), (5.9) and (5.10) considering that ¢ = 2, and neglecting errors in the

machine-tool settings.

31




Step 3. The solution obtained for the previous step is then used as the initial guess for a larger
system ~f I = 7 equations (5.8), (5.9) and (5.10), obtained by considering that one machine-tool
setting is a variable, and using ¢ = 3 measurement points.
Step 4. G;'aduall)' the number of machine-tool settings that are considered as variables are in-
creased until eventually the exact values for the whole set of j = 1,..., m unknowns machine-tool
settings are determined using a system of k = 3m + 4 equations (5.8), (5.9) and (5.10). Knowing
the real values of the machine-tool settings we may correct the settings and eliminate the deviations
of the real surface from the theoretical one.

We can expect that in some cases the real tooth surface will be substantially distorted due te
errors other than errors in the applied machine-tool settings. For these cases, we use the procedure

described in chapter 6 and 7 to improve the precision of the generated surface.
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CHAPTER 6

DETERMINATION OF DEVIATIONS OF REAL TOOTH SURFACE

Let us consider in coordinate system S, two surfaces: (i) (. that might be traced out in 5., by
the center of the probe if the gear tooth surface is an ideal surface, and (ii) surface Zlom that is
traced out by the center of the probe in the case when the gear tooth surface is the real surfaces
(Fig. 6.1).

The position vector of the probe center for the theoretical equidistant surface ¥y, is deter-

mined in S,, with the equation similar to (4.2), i.e.,

0 (0) .
Pimp = rm,,(up,op,dfl- )) + ANy (up, Op, d; ) (p=1,...,45 ; j=1,...,m) (6.1)

where, subscript p is the index of a measured point.
By measurements of the real surface the position vector of the probe center may be represented

as

R:., = Trup(tp, Opod)) + Al (2,65, dY)  (p=1,...,45 ; j=1,...,m) (6.2)

mp

where ), determines the real location of the probe center on surface E(ﬂ on and is considered along

the norm»! to the theoretical surface X,;,.
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Figure 6.1: Surface Notations
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Subscript “m” indicates that both surfaces are represented in S,,; r,,, is the position vector
of the theoretical tooth surface ¥,,; subscript “p” indicates that the current point of the grid is

considered; (u, and 6,,) are the theoretical surface Gaussian coordinates that are known for each

. . 0) ,. . : . . .
grid point; dg- ) (J = 1,....m) represent the initial theoretical machine-tool settings; n,,, is the
unit normal at the current grid point; R}, = (X;,,, Y, Z,,,) is obtained from the measurements.

Henceforth, we will assume that both surfaces have the same direction of the normal.

Equations (6.1) and (6.2) yield

a= (pmp - rmp) " Danp (63)

Ap = (R:n.p = Tmp) - Ny (6.4)

The deviatior of the real tooth surface ¥ from the theoretical surface ¥,, is measured along

m

the normal to the theoretical surface and can be represented as

Abl’ = /\I' -a= (R* - pmp) * g (65)

™mp

Taking into account equations (6.4) and (6.5) we obtain that

Dby = Ay —a = (X:np“Xnm)'nmanr( f‘r:lp—}”nf’).ny7nl‘+( :np_Zmp)'nzmp (p=1,...,45) (6.6)

'\’t T *x Z*

where, the subscript p is the index of a measured point; (X, .Y, Z;,,) are the coordinates of

the center of the probe obtained by measurements; (Xmp(tp,0p). Ymp(tp, 0p), Zimp(up, 0,)) are the
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cartesian coordinates of the center of the probe for surface E.,, that is equidistant to the theo-
retical surface ¥,, that are represented in Su; Tump(Up,8p), Nymp(Up,6p) and TmplUp, 0p) are the
projections in S, of the unit theoretical surface normal. Surface parameters (up, 6p) are considered

as known for each point of measurements.
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CHAPTER 7

MATHEMATICAL ASPECTS OF MINIMIZATION

Basic considerations

We consider two steps for computerized minimization of deviations of real tooth surfaces [9}:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations.

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The gear and the pinion tooth surface in accordance to expressions (2.4) are represented in Sy,

as follows,

iy = rm(uvgvdj) ;o Ryp = nm(u-. Bsd_]) (71)

In equations (7.1), the tooth surface is represented in terms of surface coordinates u and #. For

simplicity, the subscript “m” is dropped in the following derivations. The first order variations

of the surface that is caused by the change of machine-tool settings and surface coordinates is

represented as
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Or or T Or
br = =80+ a—u5u+;a7jédj (7.2)

where, m is the number of machine-tool settings.

We multiply both sides of equation (7.2) by the surface unit normal n and take into account that
Or Or n= 0 s Or d or

‘n= — n=0since — and -—
a6 " ou 56 % Bu

normal variations can be found as

lie in the plane that is tangent to the surface. The surface

-n)éd; (7.3)

Step 2.: Linear Equations

The surface normal variations must be equal tc the deviations obtained by measurements. Thus
we will obtain an overdetermined system of n linear equations in m unknowns ( m is equal to the

number of machine-tool settings) represented as

m 8r T
D (57 wp)bd; = 3 abd; = Db, (p=1,....n) (7.4)
2

=1 i=1

where, subscript p is the index of a measured point.
The number n of equations is equal to the number of points for measurements. In this report,

the number n is equal to 45 as mentioned in chapter 4
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We can now consider a system of n linear equations in m unknowns (m < n) of the following

structure
apbdy + ayj0bds + ... + a1 bdy, = Aby
0216d1 + (1225(12 + ...+ agmédm = Abz
......................................................... ’ (7.5)
a1116d1 + Gn2bddy + ... + Upm 0dyy, = Zl‘b‘n
Here:
Abp = (R:np - pmp) . nmp (p = 1, ey Tl) (7.6)
where subscript p is the index of a measured point; a,; (p=1,...,n;7 = 1,...,m, represent the

.0 . :
dot product of partial derivatives % and unit normaln, (p=1,...,n ; j=1,...,m).

3
The system (7.5) of linear equations is overdetermined since m < n. The mathematical aspect of
the problem for the minimization of deviations is the determination of such unknowns éd; (j =
1,....m) that will minimize the difference between the left and right sides of equations (7.5). One
of the widely used methods for the solution of the overdetermined system of linear equations is the

least-square method. In this work we have used a commercially available subroutine DLSQRR of

IMSL MATH/LIBRARY (7] for computerization of the procedure.
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Part 11

APPLICATIONS TO
COORDINATE MEASUREMENTS
OF HYPOID PINIONS AND
GEARS

40




CHAPTER 8

Minimization Of Deviations of Face-Milled Hypoid Formate Gear

8.1 Egquations of Theoretical Tooth Surface I,

The head-cutter is provided with inner and outer straight-lined blades as it is shown in Fig. 8.1.
The blades that are rotated about the axis of the head-cutter generate two cones. Each tooth side
of formate face-hobbed gear is generated by a cone and the gear tooth surface is the surface of
the generating cone. The angular velocity of rotation of blades is not related with the process of
surface generation but depends only on the desired velocity of cutting. Usually, the formate gear
of a hypoid drive is cut by the duplex method [8,9]. This means that both sides of the gear space
are generated simu! aneously by a head cutter and the machine toc: settings are the same for both
sides.

Both generating cones (Fig. 8.2) can be represented by the same equation given as

—8G COs ag
r. = | (r¢ - sgsinag)sinfg (8.1)
(r¢ - s¢sinag)cosfg

Here: r. is the position vector; rg = rg) is the cutter tip radius; sg = sg), ag = ag), (i=1,2); s(Gi)

and ag are negative for concave side , and positive for convex side (z = 1,2 for concave and convex
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Figure 8.1: Head Cutter for Tooth Surface Generation
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Figure 8.2 Generating Cone Coordinate Svstem
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side, respectively). Parameters sg and fg represent the Gaussian cocrdinates of the generating

surface. The unit normal to the generating surface is represented by the equations

or.  dr. N, sinag
N. = dsr(; X d;G ; ne = g ! = | —cosagsinfg (8.2)

— cos ag cosbg

Fig. 8.3 shows the installment of tlic Licad-cutter (generating cone) and the gear on the cutting
machine. Coordinate systems S,, S. and S are rigidly connected to the cutting machine, the head-
cutter and the being generated gear, respectively. In the process of generation, all three coordinate
svstems do not perform relative motions with respect to each other since the gear is formate cut.
Thus we may coasider that they are rigidly connected each to other. The generated gear tooth
surface is the same as the surface of the generating cone for this type of gear. The installment
of the head cutter is determined with machine-settings #, and 15 that represent the location of
origin O, of coordinate svstem S. in S,. The installment of the gear on the cutting machine is
represented by settings ',,(,?) and AX,,. The origin O, of coordinate system Sz coincides with
the point of intersection of the shortest distance of the hypoid gear drive with the gear axis (i.e.,,
crossing point). Parameter AX,, represents the location of O with respect to Op -the origin of S,.
Parameter 75,?' represents the orientation of gear axis in plane y, = 0. The set of parameters H,
12, AX,,, and ‘7,(3) represents the set of the to-be corrected settings for minimization of deviations
of real gear tooth surfaces. The theoretical gear tooth surface £, and the surface unit normal are

represented in S, by using the following matrix equations

ra(sg.0c.d;) = [Malr(sg.0G) = [Mao)[Moclre(sc, ) (8.3)
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H, ,
— - 0. z.
L
S) C ~
Ye - Z,,
0, [ -
! Oo
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44»2 42)
l ! <,  Workpiece
X, '/«p ' Axis of Rotation
_ ( |
Cradle l
Axis of Rotation ' Y, Y
Yo ¥

' Machine and Workpiece.
Figure 8.3: Installment of the Head Cutter with respect to : . -
(Fgr Formate Manufacture There Is No Rotation About Cradle Axis z, or Workpiece Axis z2)
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CcOSs ')1(3) 0 —sin 71(7?) 0
0 1 0 0
(M) = 8.4
M20) sin 7,(3) 0 cos 7,(,?) ~-AX,, (8:4)
0 0 0 1
1 0 0 0
0 1 0 -V,
(M, = 00 1 H (8.5)
0 00 1
n2(06) = [ch][nfl] = [LZ()ML(J(:]nr:(gG) (86)
cos 7,(3) 0 —sin ‘7£3 )
(Lao] = 0 1 0 (8.7)
sin 7;?) 0 cos 7£3)
1 0 0
[Loc] = 01 0 (88)
0 0 1

Equations from (8.1) to (8.8) enable the determination of the theoretical gear tooth surface ¥,

and its unit normal as (2.4),

ro(sg.0cid;) e C? (j=1,...,4) ;56,06 €E; mny(fg.v\*) #0 (8.9)
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Here d; are the machine-tool settings AX,,, Hs, V5 and 7,(,3). The Gaussian surface coordinates
are designated by s¢ and 6.
We will also need the parametric representation of a surface X,), that is equidistant to the

theoretical surface £,. Such a surface is represented as (4.2),

p2 = r2(s6.6c) + anz(6g) (8.10)

where a is the radius of the ball surface of the probe.

8.2 Determination and Minimization of Deviations

After the theoretical tooth surface ¥, of hypoid gear are obtained, the deviations of the real
surface from the theoretical one and minimized the deviations by corrections of the previous applied
machine-tool settings can be determined in chapter 6 and 7. Both sides of a formate cut gear tooth
are generated simultaneously (by duplex method), and the machine-tool settings are the same for
both sides. Therefore the minimization of deviations for both side surfaces of the tooth must be

obtained by the appropriate change of the same machine-tool settings.

Computational Procedure

The computational procedure is similar to that we discussed in Part I as follows:
Step 1. Create grid points on the to-be measured surface that are chosen as points of contact
between the tooth surface and the probe (in chapter 4).
Step 2. Determine the reference point in coordinate system Sy, (in chapter 4).

Step 3. Determine the deviations of real ooth surface from equation (6.6).
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Step 4. Minimize the deviations from equation (7.4).

8.3 Results of Coordinate Measurements and Minimization of Deviations

for Hypoid Gears

The numerical example is based on the experiment that has been performed at the Dana
Corporation (Fort Wayne, USA). The deviations of real gear tooth surfaces for both sides of the
gear tooth have been obtained by measurements on the Zeiss machine. The developed approach
has been used for minimization of obtained deviations. The number of measured points is p = 90
of both sides of the tooth (p = 1,...,45 for convex side ; p = 46,...,90 for concave side). Fig. 8.4
and Fig. 8.5 illustrate the deviations Ab, of the real surface from the theoretical one for the driving
side and coast side, respectively. The input data, original machine-tools settings, the correctivus of
machine-tool settings and the corrected machine-tool settings are shown in Table A.1 in Appendix.
The experimental data include the coordinates of theoretical surface, the projections of surface unit
normal, and coordinates of the real surface (obtained by measurements) are represented in Table
A.2-A.7 in Appendix. Based on the corrected machine-tool settings, we can create a new surface
which will optimally fit the theoretical surface after the surface is distorted by heat-treatment during
manufacture. The minimized deviations between the nev. surface and the theoretical surface are

shown in Fig. 8.6.
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Figure 8.4: Deviations of Gear Real Tooth Surface (Driving Side)
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Figure 8.5: Deviations of Gear Real Tooth Surface (Coast Side)
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CHAPTER 9

Minimization Of Deviations of Face-Milled Hypoid Pinion

9.1 Generation of Pinion Theoretical Tooth Surface ¥,

The pinion tooth surface is generated as the envelope to the family of tool cone surfaces. The
derivation of the generated pinion tooth surface is based on ideas that have been represented in

reference (3,10].

Coordinate Systems

Henceforth, we will consider the following coordinate systems: (i) the fixed ones, So:(zo', Yo', Zo')
and Sy(zq,yq, zq) that are rigidly connected to the cutting machine (Fig. 9.1 and Fig. 9.2), and
(ii) the movable coordinate systems S.» and S; that are rigidly connected to the cradle of cutting
machine and the pinion, respectively. The origin, O, of coordinate system S; coincides with the
point of intersection of the shortest distance of the hypoid gear drive with the pinion axis (i.e.,
crossing point). In the process of generation the cradle with S performs rotational motion about
the z,-axis with angular velocity w(®) and the pinion with S; performs rotational motion about
the z,-axis with angular velocity w' (Fig. 9.2).

The tool (the head-cutter) is mounted on the cradle and performs rotational motion with the
cradle. Coordinate system S, is rigidly connected to the cradle. To describe the instaliment of the

tool with respect to the cradle we use coordinate system S, (Fig. 9.1 and Fig. 9.3).
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Figure 9.1: Cutting Machine and Cradle Coordinate Systems
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Figure 9.2: Angular Velocities of Cradle and Pinion
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Figure 9.3: Pinion Head-Cutter Surface




The required orientation of the head-cutter with respect to the cradle [4' is accoruplished as

follows:

(1) coordinate ,ysi~ms Sj, and S; are rigidly connected and th . rliey are turned as one rigid

body about the :.-axis through the swivel angle j (Fig. 9.1);

(ii) then the head-cutter with coordinate system ., is tilted about th= y,-axis under the angle ¢
(Fig. 9.3.b)). The head-cutter is rotated about its axis z; but the angular velocity ‘. this
motion 1s not related with the generation process and depends only o2 the desired velocity

of cutting.

It will be shown below that the deviations of real pinion tooth surface can be rainimized by
corrections of parameters of installment of the pinion and the head-cutter. These pinion setting
paramecters are E,,- the machine offset, ‘)i,})— the machine-root angle, /A B- the sliding base, AN A-
the machine center to back (Fig. 9.2). The head-cutter settings parameters are: Sp- radia! setting,

6.~ initial value of cradle angle, j- the swivel angle (Fig. 9.1) , and i~ the tilt angle (Fig. 9.3.b).

9.2 Equations of Theoretical Tooth Surface

Tool Surface Equations:

The head-cutter surface is a cone and is represented in S; (Fig. 9.3) as

(rF + spsinag)cosfp
(rF + sFsinag)sinfp
—SFCcosap
1

r(sp.bF) =

Here: (sp.ff) are the Gaussian surface coordinates, ap is the blade angle and rg is the cutter
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point radius. Vector function (9.1) with ar positive and ar negative represents surfaces of two
head-cutter that are used to cut the pinion concave side and convex side, respectively (Fig. 9.4).

The unit normal to the head-cutter surface is represented in S; by the equations

— cosag rosAp
n, = | —cosarsinfg (9.2)
—sinag

Family of Tool Surfaces

The cradle with the mounted head-cutter and the pinion perform rotational motions about the
axes-z, and r,, respectivcly. The angles of cradle and pinion rotation, ¢ and ¢, are related by the

equation

= 9, + mq,cbl (93)

(e)

Here: ¢, is the initial value of cradle angle and m., = o
w

is the gear cutting -atio.
The familv of tool surfaces is generated in 5; and this family is represented by the matrix

equation

r ('SF~ ng d)l) = {A]lq(ol)}‘j[qnazﬂjnn'}Zﬂln’r"][]b[c'b}[Ajhf}rt(sF- HF) (94)

Coordinate system 5, is an auxiliary fixed coordinate svstem whose axes are parallel to axes of

S, (Fig. 9.2). Matrices in equation (9.1) are represented as follows
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cost 0 sini 0
0 1 0 0
4, =
Mol =1 _Gini 0 cosi 0 (9:5)
0 0 0 1
~sinj —cosj 0 Sp
; cosj —sinj 0 0
'A’.{{.I) = .
(Moo 0 0 1 0 (9.6)
[ 0 0 0 1
cosqg sing 0 0
—sing cosq 0 0
A/' i1 =
(M) 0 0 1 0 (9.7)
0 0 01
100 o 1
v 1 0 £,
[M'rm’] — 0 0 1 —‘AB (98)
0 0 O 1
cos ‘y,(,}) 0 sin 7,(,}) -ANA
0 1 0 0
Mgn) = o (1) {9.9)
=Sy, 0 cosvm 0
0 0 0 1
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0 0
cos¢; sin ¢y
—sin¢, cos @,
0 0

My, = (9.10)

OO O =
-0 O O

Matrix equation (9.4) and tool surface equation (9.1) represent in S; the family of tool surf~ces

in the form

rn= rl(SF»OFad)l) (9'11)

Equation of Meshing

The pinion tooth surfec. generated in S; is the envelope to the family of tool surfaces. To

determine such an envelope we have to derive the equation of meshing [3] by using the equation

n'?) . viP) = NP | yler) = f(sp.0F,0,) =0 (9.12)

where n'®’ and N”) are the unit normal and the normal to the tool surface, and v{°") is the velocity
in relative mouion.

Equation (9.12) is invariant with respect to the coordinate system where the vecturs of the
scalar product are represented. Representing those vectors in S, we can derive the equation of
meshing using the following procedure

Step 1.: Vector n, can be represented as




where [L] is the 3 x 3 submatrix of [M]. The superscript in n

designations.

n, = {Lo’c'HL(:'bMLbf]n\‘

(p)

o'

Step 2.: The sliding velocity vf)',"m (see [3]) is represented by (Fig. 9.2):

Here:

= wle) _ w(p)) X Tor] + (O g X w(r)))

ry = [A!o’r:’] []ur:’b] [A'[bi ]rf

074 =10 E. ABI"
W= —feosyy’ 0 singlT (W)= 1)
w(f‘) — ,_,[0 0 mcp]

Equations (9.12), (9.13) and (9.14) yield the equation of meshing in form

f(sF~0F1¢1): 0
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is dropped for simplification of

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)




Pinion Tooth Surface Equations

The pinion tooth surface equations are represented in three-parametric form by the equations

r1(31,9F,01) = {M“]r,(sp,ep) f(sF,HF,¢1) =0 (9.20)

However, since equations (9.20) are linear with respect to the Gaussian coordinate sy we can

eliminate s and represent the pinion tooth surface in two-parametric form as

ri(0f.61.d;)eCt (OF,¢1)¢E (9.21)

Here: d; (j = 1.....8) designate the installment parameters; E,,L.-),(,}),AB.AA.SR,B(,,j and 7 ;
('* designates that the vector function has derivatives on arguments 8 and o, at least of the first
and second order.

The normal to the pinion tooth surface is represented as

n(0F. ¢1.dy) (9.22)
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where d;. (k = 1,2.3,4) designate the installment parameters ‘)f,}), f.,j and 7.

9.3 The Grid

We recall that the grid (Fig. 4.1) is a set of points on the theoretical surface ¥ that are chosen as
points of contact between the tooth surface and the probe.

The development of the grid is based on the following considerations (see chapter 4):

(1). In accordance to the practice of measurements a set of 45 points is usually chosen for the
measurements that are located in nine longitudinal sections of the pinion surface with five points
in each section (Fig. 4.3).

(2). Mean point M (Fig. 4.3 and Fig. 9.5) of the theoretical surface ¥ is usually chosen as the
reference point, that is necessary for the initial installment of the probe on the coordinate mea-
surement machine. Obviously, the real tooth surface £* does not pass through M and the surface
normal at M/ intersects the real surface at AM*. We can consider that an imaginary theoretical
surface ¥, that is equidistant to ¥ passes through AM* and the deviations of the real surface are
determined with respect to ).

As shown in Fig. 9.5 the position of the mean point M can be represented in 5; by XL and
RL, which are determined by the following equations
hgm )sinTy

N (9.23)
RL = Asinly - (bg - —;i)cosl“l

XL =AcosTy + (bg -

Here, A is the mean cone distance; I'; is the pinion pitch angle; bg is the mean dedendum and A,,
is the mean whole depth; XL and RL are measured along the pinion axis and perpendicular to

this axis, respectively.
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0. Pitch Cone Apex
O,g: Root Cone Apex
O,r: Face Cone Apex

Figure 9.5: Mean Point




Combining equation (9.23) with surface equation (9.21), we may obtain two nonlinear equations

in terms of (q')(l"), 9(1,?)),

ri(¢}”,0%)) = XL + 7,
(9.24)
v, 05)) + (61, 65)) = RL?

Here, Z,, is the pitch cone apex beyond the crossing point O;.

Solving equation system (9.24), we may determine surface coordinates (d>(1°),9(;)) for the refer-

ence point and also its Cartesian coordinate (:c(lo), ygn), :go)).
(3). After the reference point is located, the rest of grid points can be chosen with the consid-
eration that the grid points must be located uniformly on the working part of the tooth surface.

(4). Points on surface X(.); that is equidistant to theoretical surface ¥, can be determined in

S1 with the vector equation

p1 = ri(¢1,0F) + ani(¢1, 0F) (9.25)

where a is the radius of the ball surface of the probe. Equations (9.24) and (9.25) are represented
in the terms of the Gaussian surface coordinates. Equations (9.25) represent in S; the surface that

might be traced out by vhe center of the probe if the surface deviations are equal to zero.

9.4 Determination of Reference Point in Coordinate System S,,

We recall that coordinate system §,, is rigidly connected to the coordinate measurement machine
and our purpose is to determine the initial installments of the pinion on the machine to provide
the contact of the probe with the pinion mean surface point.

We consider that the pinion is installed with its back-face flush against the base plane of the

CMM such that the origin of coordinate system S;, Om, coincides with 01 and thus parameter [
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is equal to zero (Fig. 9.6). Usually, the measurement process is performed in a coordinate system
Sm where the y,, coordinate of the mean point is zero.
According to drawings of Fig. 9.7, the coordinate transformation from $; to S,, with. = 0 is

as follows,

[rm] = [Alml]["'l] = [Mml’]{Ml’l][TI] (926)

0 —siné —-cosé 0

. . 0 —cosé siné 0
(Mun] = [My][Min] = 1 0 0 0 (9.27)

0 0 0 1

Then we obtain for the reference point
T,, = —y;sind — 2y cosé

Ym = —Yy1c0sd + 21 5in 6 (9.28)

“m = — 2

We consider that in equations (9.28) coordinates z\”’,3!”) and :!*) for the reference point are

known and the equation system must be solved for three unknowns. Taking yﬁ,(f) = 0, we may

represent the solution for the unknowns a:(.;f), :,(,{f) and é as follows

= () + (7)) (9.29)
0 (2] ] 0)
b )P+ () + o
tan§ = — WD) (9.30)
] ™m
slol = ) (9.31)
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After obtaining the angle of é, the theoretical pinion tooth surface £; can be represented in S,,
by using equation (9.26). Similarly, the unit normal to the theoretical pinion tooth surface can be

represented in S, as

(] = [Lon1][n1] (9.32)
where,
0 -—siné —cosé
[Ly]=1] 0 =—cosé siné (9.33)
-1 0 0

(o)

The coordinates of probe center pi,‘i) = [X,(,?), m ,Zﬁ,'f)]T on surface X, that correspond to

yn
reference point (;r(l')),yg”),:§°)) on theoretical surface ¥; can be determined in S, with equation
similar to (9.25). For the initial installment the pinion tooth surface must be brought into contact
with the probe while the probe center is at (X,(,f),}’,ﬁf’),Z,(,f)). Then, the pinion tooth surface is
fixed in the rest of measurement process, while the probe performs the translational motions.

Based on the above considerations, the procedure of initial installment can be obtained as

follows:

(1) Instal] the probe with coordinates (X,(,?), W, Z,(,?)) that are represented as follows:

X,(,?) = :c(n?)+an§r2)1

YO = @4 anld) (9.34)
0 0

W= 4 anld)

Here: n(,(z,)l ng,?,l and n(;,(,),z are the components of the theoretical surface normal at the reference

point; a is the radius of the ball surface of the probe.

(i1) Turn the rotary table until the probe contacts the to-be-measured surface. The value of é for

this installation is given by equation (9.30).
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9.5 Derermination of Deviations of Real Tooth Surface

We consider in coordinate system S, two surfaces: (i) X(,),, that might be traced out in 5, by
the center ¢ the probe if the pinion tooth surface is an idea: surface, and (ii) surface Z(‘")m that is
tiaced out in reality by the center of the probe in the case whe 1 the pinion tooth surface is a real
surface.

The position vector of the probe center for the theoretical equidistant surface ., is deter-

mined in S, with the equati-n similar to (9.25), i.e.,

Poni = Tmi01i,0p.d;) + angni(@1:. 05, dy) (i=1,....45) (9.35)

Bv measurements of the real suiiace the position vector of the probe center may be represented

as

Roi = rog(0n 0rid,) = Aovgi(01. 0F:. di) («=1.....45) (9.36)

where \, dctermines the real location of the prebe conter on surface 7 | and is considered along
the normal to the theoretical surface.

Subscript “m” indicatc. that both surfaces are represented in 5,,; subscrint “i” indicates the
current point of the orid: (o), and 0f ) are Gaussian coordinates of the theoretical tooth surface &
that are known for each grid point, d; (j = 1..... 8) represent the linear and angular machine tool
settings designated by E,,.. W B.2A. Sk A, j.i.q., (Fig. 9.1,9.2,9.3); di (k = 1.....4) represent

the angular machine-tool settings designated by 0., 7.1, 9.

Equations (9.35) and (9.36) vield
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a = (prni - r”Li) R (937)

‘\i = (T{mi - r‘mi) B L379%4 (938)

The deviation of the real tooth surface £* from the theoretical surface ¥ is measured along the

normal 1o the theoretical surface and can be represented as

Sbi =N —a= Ropi = p,) - Mo (9.39)

Taking into account equations (9.39) and (9.3%) we obtain that

‘L‘I]l - ’\l —a = (‘\’1'“,' - -'\vnu'\ T TNrpa ~ ()7,’” )nu) ’ n!/nu N (Z:,“ - Z'H:L) Nz (940)
wheoe (AL Y 20 ) ere the coordinates of the center of the probe obtained by measurements:

\Noni Yonis Zo ) are the coordinntac of the center «f the prot » for surface ¥ ., “hat is equidistant

tc the iheoretical surface ¥,,,.
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9.6 Mathematical Aspects of Minimization

We consider two steps for computerized minimization of deviations of real tooth surfaces:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations (see chapter 7).

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The pinion tooth surface in accordance to expressions (9.21) and (9.22) is represented in 5, as

follows

Ty, = rnLi(C'li'ﬂFi-(l,J) S nrn(®1i~9Fi~dk) (941)

3

For simplicity. the subscript “m™ is dropped in the following derivations. The first order varia-
tions of the surface that is caused by the ciiange of machine-tool settings and surface coordinates

is represented as

dr ) ar,
v, s o L - e Doy - Y A g (9.42)
e doy e dd; i
i

[he normal deviation of the surface at grid point 7 can be represented by

Do o ey () (8.43)
where nt 0oon
. n-..n
Here 7 om, is the variation of surface unit normal ; n’ - 1

Since we eonsider the first order deviations. we can represent the deviations J.r,, by
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8 o
dl‘i
Ary; = 4O oy = Z(OTAG’J) 1y (9.44)
j=1 7
o . . or or
While deriving equation (9.44) we have taken into account that — -n = — -n = 0 because
00F 0o,
dr dr . .
vectors — and —— lie in the plane that is tangent to the surface.
Obp 501

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will cbtain an overdetermined system of n linear equations in eight unknowns represented as

8

— ) 1

> ;; Ad;) mg = A (9.45)
=1

The number of equations, n, is equal to the number of measurements (the number of grid
points). In this example, 8 machine-tool settings are considered. The mathematical aspect of the
problem is the determination of such eight unknowns of /id; that will minimize the difference of
the right and left sides of equation system (9.45). One of the widely used methods for the solution
of the overdetermined system of linear equations is the least-square method. In this work we have
used the subroutine DLSQRR of INISL MATH/LIBRARY (7! for the numerical solution.

9.3 Results of Conordinate Measurements and Minunization of Deviations

for hypoid pinions

The numerical example is based on the experiment that has been performed at the Dana
Corporation (Fort Wayne, USA). The deviations of real pinion tooth surfaces for both sides of the
pinion tooth have been obtained by measurements on the Zeiss machine. The developed approach
has been used for minimization of obtained deviations. Fig. 9.8 and Fig. 9.9 illustrate the deviations
Zub; of the real surface from the theoretical one, that have been obtained by measurements and

calculations for the concave side and convex side, respectively. Based on the corrected machine-
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tool settings, we can manufacture a new surface that will optimally fit the theoretical surface after
the surface is distorted by heat-treatment and manufacturing process, etc. The results of performed
experiment for minimized deviations between the new surface and the theoretical surface are very
favorable, that is illustrated with drawings in Fig. 9.10 and Fig. 9.11 for concave side and convex
side, respectively.

Experimental Data

The experimental data are represented in tables in Appendix (Table B.1-B.7 for concave éide,

Table C.1-C.7 for convex side)

(1) Blank data of hypoid pinion

(2) Initial basic machine-tool settings

(3) Coordinates of theoretical surface X

(4) Projections of surface unit normal

(5) Coordinates of real surface £* (obtained by measuiements)
(6) Corrected machine-tool settings

(7) Corrections of machine-tool settings
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Appendix A

Table A.1: RESULTS OF MINIMIZATION FOR DANA HYPOID GEAR

INPUT DATA i
'| Pressure Angle ag 21.25° |
{‘ Cutter diameter 228 .6mm \
1 Point Width of Cutter 2.032mm ‘

T"BASIC MACHINE-TOOL SETTINGS :

1 1a(Vertical Setting) 103.25255mm ||
l Ho(Horizontal Setting) 27.4666mm ||
" 57 (Machine Root Angle) 60.723°
ruﬁz‘{m(i\lachine Center to Back) 0.00967Tmm

“CORRECTIONS OF MACHINE-TOOL SETTINGS REQUIRED -

" Ty(Vertical Setting)

. WHM(Hurizcmta.l Setting)

~0.250553mumn |

'»,,[ '(Machine Root Angle)

|
|
~0.000361mm \[
i
|
i

0.260867"

\},,(Ma(hme (enter T() Back)

- 0.543113771777@

(()HRL( TED MACHINE- TOOL SETTINGS: l,

T »(Vertical Settmg) 103.2522mm
TH Horxzrmtal Setting) 27.21603mm |
i 7,,, (\Iachme Roc.. Angle) 60.98391° »J
Lo \,,,('\Iachme (emer to Back) -0.53343mm |
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***ﬁ****ﬁ*****ﬁ*k**ﬁ*ﬁ**ﬁhﬁ****ﬁ*ﬁ****ﬁ***************h***************

Table A.2 Coordinates of Theoretical Surface (Convex Side)
{represented in Sm (Fig. 3.2))

**iﬁ**ﬂ*ﬁ***ﬂﬂ*ﬁu*ﬁkﬁh***ﬁ*****ﬁ*******k****ﬁ**k***ﬁ**********ﬁ*ﬁ***ﬁ*

XT (inch) YT (inch) 2T (inch)
1 1 3.128970 0.2903200 -1.660430
1 2 3.149190 0.2766600 -1.612140
1 3 3.169320 0.2630300 ~1.563840
1 4 3.189390 0.2494500 -1.515550
1 5 3.209370 0.2358900 -1.467260
2 1 3.247090 0.2322700 -1.715660
2 2 3.267980 0.2179600 -1.664110
2 3 3.288790 0.2036900 -1.612550
2 4 3.309520 0.1894600 -1.561000
2 5 3.330190 0.1752700 ~-1.509450
3 1 3.364070 0.1699200 -1.770890
3 2 3.385620 0.1549900 -1.716080
3 3 3.407080 0.1401000 -1.661260
34 3.428470 0.1252500 ~-1.606450
3 5 3.449790 0.1104400 -1.551640
4 1 3.479810 0.1032600 -1.826120
4 2 3.501990 0.8771000E-01 -1.768050
4 3 3.524090 0.7221000E-01 -1.709970
4 4 3.546120 0.5676000E-01 -1.651900
4 5 3.568090 0.4134000E-01 -1.593830
5 1 3.594170 0.3223000E-01 -1.881350
5 2 3.616970 0.1609000E-01 -1.820020
5 3 3.639700 0.0000000E+00 -1.758680
5 4 3.662360 ~0.1605000E-01 -1.697350
5 5 3.684950 -0.3206000E-01 -1.636020
6 1 3.707040 -0.4318000E-01 -1.936580
6 2 3.730450 -0.5990000E-01 -1.871980
6 3 3.753790 -0.7658000E-01 -1.807390
6 4 3.777060 -0.9322000E-01 -1.742800
6 5 3.800270 ~0.1098100 -1.678210
7 1 3.818290 -0.1230000 -1.991800
7 2 3.842300 ~0.1403100 -1.923950
7 3 3.866230 -0.1575700 -1.856100
7 4 3.890110 J.1747800 -1.788260
7 5 3.913920 -0.1919500 -1.720410
8 1 3.927780 -0.2072700 ~2.047030
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.2251500
.2429900
.2607900
.2785400

.2960100
.3144800
.3329100
.3512900
.3696300

.975920
.904810
.833710
.762600

. 102260
.027890
.953520
.879160
.804790
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---------------

Table A.3 Coordinates of Theoretical Surface (Concave Side)
(represented in Sm (Fig. 3.2))

.......

10
10
10
10
10

11
11
11
11
11
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12
12
12
12

13
I3
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13
13

14
14
14
14
14

15
15
15
15
15
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16
16
16
16
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[ e L N - DN LS~ — Lo W N oW N

LW N -

XT (inch)
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W W W W w
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.133200
. 150790
. 168110
. 185160
.201940

. 249620
. 268670
.287400
.305810
.323910

.364720
.385350
. 405610
. 425490
. 445010

. 478340
. 500690
.522590
.544070
.565120

. 590310
.614510
.638210
.661400
.684110

. 700440
. 726650
.752280
.777330
.801830

.808520
.836920
.864640
.891700
.918130

.914360

........

YT (inch)
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. 1974800
.2285300
.2595400
.2904800
.3213800

. 1343800
.1681800
.2019200
.2356100
.2692400

.6628000E-01
.1029300
. 1395300
.1760700
.2125400

.6930000E-02
.3269000E-01
.7226000E-01
.1117600
.1511900

.8535000E-01
.4265000E-01
.0000000E+00
.4258000E-01
.8508000E-01

.1691000
-1232100
.7736000E-01
.3159000E-01
.1411000E-01

.2583200
.2091100
. 1599500
.1108600
.6185000E-01

.3531200

(inch)

.666550
.616730
.566910
.517080
.467260

.721780
.668700
.615620
.562530
.509450

.777010
.720670
.664330
.607980
.551640

.832240
. 772640
. 713040
.653440
.593830

.887470
.824610
.761750
.698890
.636020

.942700
.876580
.810460
. 744340
.678210

.997930
.928550
.859170
. 789790
.720410

.053160
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&S

.945110
.975100
.004340
.032850

.017700
.051000
.083450
. 115050
. 145820

.3004800
.2478900
.1953600
.1429100

.4536600
.3974800
.3413300
.2852300
.2292100

.980520
.907880
.835240
. 762600

. 108390
.032490
.956590
.880690
.804790




**k****ﬁﬁ********ﬁ******ﬁ**********ﬁ**********************************

Table A.4 Projections of Surface Unit Normal (Convex Side)

(represented in Sm (Fig. 3.2))

ﬁﬁ*k***ﬁ**k*k*********ﬁ********khﬁ***ﬁ******ﬁ*kk*******k**************

XN (inch) YN (inch) ZN (inch)
1 1 0.4496000 0.8910000 0.6380000E-01
1 2 0.4500000 0.8908000 0.6360000E-01
1 3 0.4504000 0.8906000 0.6350000E-01
1 4 0.4508000 0.8904000 0.6330000E-01
1 5 0.4512000 0.8902000 0.6310000E-01
2 1 0.4743000 0.8789000 0.5180000E-01
2 2 0.4747000 0.8786000 0.5150000E-01
2 3 0.4751000 0.8784000 0.5130000E-01
2 4 0.4755000 0.8782000 0.5110000€E-01
2 5 0.4759000 0.8780000 0.5090000E-01
3 1 0.4988000 0.8658000 0.3990000E-01
3 2 0.4992000 0.8656000 0.3960000E-01
3 3 0.4997000 0.8653000 0.3940000E-~01
3 4 0.5001000 0.8651000 0.3920000E~-01
3 5 0.5006000 0.8648000 0.3900000E-01
4 1 0.5231000 0.8518000 0.2820000E~-01
4 2 0.5236000 0.8515000 0.2790000E-01
4 3 0.5241000 0.8512000 0.2770000E-01
4 4 0.5246000 0.8509000 0.2750000E-01
4 5 0.5251000 0.8506000 0.2720000E-01
5 1 0.5472000 0.8368000 0.1670000E-01
5 2 0.5478000 0.8365000 0.1650000E-01
5 3 0.5483000 0.8361000 0.1620000E-01
5 4 0.5489000 0.8358000 0.1600000E-01
5 5 0.5494000 0.8354000 0.1570000E-01
6 1 0.5711000 0.8208000 0.5500000E-02
6 2 0.5717000 0.8204000 0.5200000E-02
6 3 0.5723000 0.8200000 0.5000000E-02
6 4 0.5729000 0.8196000 0.4700000E-02
6 5 0.5735000 0.8192000 0.4400000E-02
7 1 0.5947000 0.8039000 -0.5400000E-(2
7 2 0.5954000 0.8034000 -0.5700000E-02
7 3 0.5961000 0.8029000 -0.6000000E-02
7 4 0.5967600 0.8024000 -0.6300000E-02
7 5 0.5974000 0.8019000 -0.6700000E-02
8 1 0.6180000 0.7860000 -0.1610000E-01

84
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.6188000
.6195000
.6203000
.6210000

.6410000
.6419000
.6427000
.6435000
.6444000
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QO OO

OO O

. 7854000
. 7843000

7842000

. 7836000

.7671000
. 7664000
.7656000
. 7649000
. 7642000

. 1640000E-01
.'680000E-01
.171C000E-C1
.17400CYE-uU1

.2640000E-0G1
.268000CE-01
.2720090=-01
.2760000E~01
.2790000E-01
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Table A.5

...............

10
10
10
10
10

11
11
11
11
11

12
12
12
12
12

13
13
13
13
13

14
14
14
14
14

15
15
15
15
15

16
16
16
16
16

17
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0N Wt

Projections of Surface Unit Normal

.....................

(represented in Sm (Fig. 3.2))

.........................

(inch)

.1557000
. 1524000
. 1492000
.1459000
. 1426000

. 1789000
.1753000
. 1718000
. 1682000
. 1646000

.2019000
. 1981000
.1943000
. 1904000
. 1865000

.2248000
.2207000
.2166000
.2124000
.2083000

.2475000
.2431000
.2387000
.2343000
.2298000

.2699000
.2653000
.2606000
.2559000
.2512000

.2922000
.2872000
.2823000
.2773000
.2724000

.3141000

YN (inch)

-0.8123000
-0.8141000
-0.8159000
-0.8176000
-0.8193000

-0.7991006
-0.8012000
-0.8033000
-0.8053000
-0.8073000

-0.7850000
-0.7874000
-0.7898000
-0.7922000
-0.7945000

-0.7699000
-0.7727000
-0.7754000
-0.7782000
-0.7809000

-0.7538000
-0.7570000
-0.7602000
-0.7633000
-0.7664000

-0.7367000
-0.7404000
-0.7440000
-0.7475000
-0.7510000

-0.7187000
-0.7228000
-0.7268000
-0.7309000
-0.7348000

-0.6996000

86

(Concave Side)

ZN (inch)

.5620000
. 5604000
.5587000
.5570000
.5553000

[=NeNo ool

. 5740000
.5721000
.5703060
.5685000
.5667000

QOO0 O

.5857000
.5838000
.5818000
.5799000
.5779000

[N NaNo Nl

.5973000
.5952000
.5931000
.5911000
.5889000

COO0OOO0o

.6087000
.6065000
.6043000
.6021000
.5999000

OO0 OO

.6200000
.6176000
.6153000
.6130000
.6106000

QO OOC

.6310000
.6285000
.6261000
.6236000
.621600y

QOO0

0.6418000




17
17
17
17

18
18
18
18
18

bh o N

LW N -

.3090000
.3038000
.2986000
.2933000

.3359000
.3304000
.3250000
.3195000
.3140000

87

.7042000
.7088000
. 7133000
. 7177000

.6794000
.6846000
.6897000
.6947000
.6997000

OO O0O

OO OOC

.6393000
.6367000
.6341000
.6315000

.6524000
.6497000
.6471000
.6444000
.6417000
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Table A.6 Coordinates of Real Tooth Surface (Convex Side)
(represented in Sm (Fig. 3.2))
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XM (inch) YM (inch) ZM (inch)
1 1 3.129490 0.2913500 -1.660350
1 2 3.149700 0.2776800 -1.612060
1 3 3.169750 0.2638600 -1.563780
i 4 3.189690 0.2500400 -1.515510
1 5 3.209520 0.2361800 -1.467240
2 1 3.247520 0.2330600 -1.715610
2 2 3.268290 0.2185300 -1.664070
2 3 3.289010 0.2041000 -1.612530
2 4 3.309610 0.1896300 -1.560990
2 S 3.330130 2.1751800 -1.509460
3 i 3.364450 0.1705700 -1.770860
3 2 3.385850 0.1553900 -1.716060
3 3 3.407190 0.1402900 -1.661260
3 4 3.428470 0.1252400 -1.606450
3 5 3.449590 0.1101000 -1.551660
4 1 3.480060 0.1036700 -1.826100
4 2 3.502140 0.8796000E-01 -1.768040
4 3 3.524200 0.7239000E-01 -1.709970
4 4 3.546040 0.5661000E-01 -1.651910
4 5 3.567790 0.4086000E-01 -1.593850
5 1 3.594330 0.3248000E-01 ~-1.881340
5 2 3.617010 0.1615000E-01 -1.820010
5 3 3.639690 ~0.2000000E-04 ~1.758680
5 4 3.662250 -0.1622000E-01 -1.697360
5 5 3.684770 -0.3233000E-01 ~-1.636030
6 1 3.707180 -0.4297000E~01 -1.936570
6 2 3.730500 -0.5983000E-01 -1.871980
6 3 3.753810 ~0.7655000€E-01 -1.807390
6 4 3.777040 -0.9324000E-01 -1.742800
6 5 3.800210 -0.1098800 -1.678210
7 1 3.818310 ~0.1229700 -1.991800
7 2 3.842330 -0.1402600 -1.923950
7 3 3.866260 -0.1575300 ~-1.856100
7 4 3.890240 -0.1746000 -1.788260
7 5 3.914230 -0.1915300 -1.720410
8 1 3.927840 -0.2071900 -2.047030

38
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.952510
.977000
.001410
.025690

.035370
.060560
.085710
.110690
.135620

89

-0.2249800
-0.2428600
-0.2607300
-0.2786400

-0.2960200
-0.3144600
-0.3328300
-0.3512800
-0.3696800

-1.975930
-1.904820
-1.833710
~1.762590

-2.102260
-2.027890
-1.953530
-1.879160
-1.804780
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Table A.7 Coordinates of Real Tooth Surtace {Concave Side)
(represented in Sm (Fig. 3.2))

10
10
10
10
10

11
11
11
11
11

12
12
12
12
12

13
13
13
13
i3

14
14
14
14
14

15
15
15
15
15

16
16
16
16
16

17

W N = (VRN VA S VoW - W W N - wn S WwN - NN

KW —

XM (inch)

W W ww W W W W W W W W W w W wWw W W W ww W W wwWw

W W W W W

. 132990
.150610
. 167920
. 184990
.201810

.249400
.268500
.287250
.305660
.323800

.364540
.385210
. 405490
.425410
.444970

.478190
.500600
.522530
.544050
.565170

.590180
.614450
.638200
.661460
.684250

.700360
. 726640
.752350
.777450
.802060

.808470
.836960
.864780
.891920

.918530

.914340

30

YM (inch)

QOO0 OO QOO O0O0o

QO 000

. 1964100
.2275400
.2585200
.2895700
.3206400

.1334300
.1673900
.2012300
.2349100
.2687000

.65590C0E-C1
.1023500
. 1390500
.1757200
.2123700

.7460000E-02
.3238000E-01
.7202000E-01
.1116800
.1513600

.8574000E-01
.4283000E-01
. 1000000E-04
.4279000E-01
.8554000E-01

.1693200
.1232300
.7716000E-01
.3124000E-01
.1480000E-01

-0.2584400

-0

.2090000
. 1596000
.1102900
.6077000E-01

.3531600

ZM (inch)

.665810
.616050
.566210
.516460
. 466760

.721100

.668130

.615120

.562040

.509070

.776500
.720240
.663970
.607730
.551520

.831830
.772390
. 712860
.653370
.593960

.887160
.824460
.761740
.699050
.636390

.942510
.876550
.810620
. 744620
.678780

.997820

.928640
.859460
.790270
.721310

.053120
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18
18
18
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.945230
.975310
. 004620
.033320

.017820
.051260
.083780
. 115450
. 146320
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.3002000
.2474000
. 1946900
.1417500

.4534000
.3969500
.3406200
.2843600
.2280800

.980770
.908320
.835830
.763610

. 108630
.032980
.957250
.881500
.805820

;)
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...............

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radians
PITCH DIAMETER: 88.22 mm
QUTSIDE DIAMETER: 103.96 mm
PITCH ANGLE: 0.32055 radians
FACE ANGLE: 0.41480 radians
ROOT ANGLE: 0.30136 radians
MEAN SPIRAL ANGLE: 0.84677 radians
FACE WIDTH: 38.30 mm

WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.

92
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BASIC TILT ANGLE Cc1
SWIVEL ANGLE : CJ
MACHINE ROOT ANGLE : RGMAIM
CRADLE ANGLE : QcC
RADIAL SETTING : SR
SLIDING BASE : DELTB
MACHINE CENTRR TO BACK:DELTA
BLANK OFFSET : EM
CUTTING RATIO : FM1
CUTTER POINT RADIUS : RCF

CUITER BLADE ANGLE : PHIVIC

93

]

]

]

[]

/]

[}

0.4104054
6.000656
6.229372
1.566173
109.6660

14.82000
-3.100000
-34.58000
0.3230215

113.0300
0.2443461

radians
radians
radians
radians
mm

mm
mm
mm

mm
radians

......




IO (W V. IO, IV, IRV, D W W wWwww NN NN —— e b e

~N N SN N

(V. I - RS I S Ed oW W\ W N - N oW - (W I S BRSNS wmoE W

W W -

...................

XT (inch)

1
1
1
1
1

[ e e s b bt b pomh b P v s [T T — J o

P bt e e

.182150
.209360
.234970
.258970
.281330

.288970
.323870
.357280
.389190
.419540

.376770
.419280
. 460570
.500570
.539180

.445230
. 495080
.544110
.592160
.639110

.494220
.550950
.607360
.663240
.718400

.523750
.586690
.649960
.713260
.776320

.533930
.602270
.671710
.741850
.812330

.524960

..........

YT (inch) T
0.5780900 -2,
0.6126500 -2.
0.6497300 -2
0.6891100 -2.
0.7306100 -2.
0.4359300 -2.
0.4692300 -2.
0.5057100 -2.
0.5450800 -2
0.5871400 -2
0.2825600 -3.
0.3132400 -3.
0.24677800 -3.
0.3858300 -3.
0.4271500 -3.
0.1203900 -3.
0.1471400 -3.
0.1784300 -3.
0.2138500 -3.
0.2531100 -3.
-0.4833000E-01 -3.
-0.2678000E-01 -3.
0.0000000E+00 -3.
0.3151000E-01 -3.
0.6741000E-01 -3.
-0.2215400 -3.
-0.2063300 -3.
-0.1852600 -3.
~-0.1589100 -3.
-0.1276300 -3.
-0.3972700 -3.
-0.3894600 -3.
-0.3752200 -3.
-0.3551800 -3.
-0.3297300 -3.
-0.5736900 -3.

94

(inch)

843880
830410

.816930

803460
789990

987910
973160
958410

.943660
.928910

131950
115920
099890
083860
067830

275980
258680
241370
224060
206760

420020
401440
382850
364260
345680

564050
544190
524330
504460
484600

708090
686950
665810
644660
623520

852120

et ot o
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.597730
.672520
. 748770
.826030

L497150
.573260
LAS2420)
.733910
.817170

95

-0

. 5742300
-0.
.5551500
.5366800

5678200

. 7490500
-0.
-0.
-0,
. 7462900

7587500
7610400
7SAT400

.829700
.807290
.784870
. 762440

.996160
.9724K0
.948760
.Q25070
.901370
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Projections of Surface Unit Normal

{represented in Sm (Fig.

N W N NN~ . NP W ) e AD W N — n I~ N — N W N

(Y RPN

XN (inch)

DO O DO

OO0 D

<

.2974000
.3205000
.3390000
.3540000
.3662000

.2173000
. 2467000
. 2704000
. 2899000
.3061000

. 1340000
. 1696000
. 1984000
.2223000
. 2424000

.4920000E-01
.9090000E-01
. 1246000
. 1527000
. 1764000

.3530000E-01
. 1210000E-01
.5030000E-01
.8220000€E-01
. 1093000

. 1182000

.6550000E-01
.2320000E-01
.1210000E-01
.4220000E-01

. 1983000
. 1408000
.9480000E-01
.S650000E-01
.2380000E-01

.2742000

3.2))

YN (inch)

-0.
-0.
-0.
-0.
-0.

96

.5635000
. 5308000
. 5003000
. 4716000
4445000

.6032000
.5716000
. 5419000
. 5138000
.4871000

.6303000
.6008000
.5728000
. 5460000
. 5203000

6450000
6187000
5932000
5684000
5443000

.6479000
.6257000
.6033000
.5811000
.5592000

.6395000
.6222000
.6038000
.5847000
.5653000

.6203000
.6090000
. 5949000
. 5794000
.5630000

.5913000

{Concave Side)

...................

ZN (inch)

.7707000
. 7846000
. 7967000
.8076000
.8175000

DO O OO

0.7674000
. 7826000
. 795RN000
.8074000
.8180000

o O o0

.7647000
. 7812000
. 7953000
.8077000
.8189000

DO O OO

. 7626000
. 7804000
. 7954000
.8085000
.8202000

OO O OO

. 7609000
. 7800000
. 7959000
.8096000
.8218000

(oo I e Jen I en JRew]

. 7597000
. 7801000
. 7968000
.8112000
.8238000

[ov B e B en B an B an

. 7589000
. 7806000
. 7982000
.8131000
.8261000

OO D300

0.7584000
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-0
-0
-0
-0

-0
-0
-0
-0
-0

.2126000
. 1637000
. 1228000
.8790000E-01

.3452000
.2800000
.2287000
. 1859000
. 1492000

97

.5865000
.5774000
.5659000
.5528000

.5531000
.5557000
.5520000
. 5547000
.5352000

[l o e R e}

OO0 OD

. 7815000
. 7999000
.8153000
.8287000

. 7582000
. 7828000
.8019000
.8178000
.8315000
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Table B.5 Coordinates of Real Tooth Surface (Corcave Side)
(represented in Sm (Fig. 3.2))
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XM (inch) YM (inch) ZM (inch)
1 1 1.1824%0 0.5774400 -2.843000
1 2 1.209710 0.6120800 -2.829570
1 3 1.235370 0.6491400 -2.816000
1 4 1.259370 0.6885800 -2.802550
1 5 1.281660 0.7302100 -2.789240
2 1 1.289150 0.4354400 -2.987290
2 2 1.324080 0.4687300 -2.972470
2 3 1.357500 0.5052700 -2.957760
2 4 1.389440 0.5446400 -2.942970
2 5 1.419790 0.5867400 -2.928240
3 1 1.376840 0.2822200 -3.131530
3 2 1.419380 0.3129000 ~-3.115470
3 3 1.460680 0.3474600 -3.099450
3 4 1.500700 0.3855100 -3.083390
3 5 1.539330 0.4268400 -3.067350
4 1 1.445240 0.1202400 ~3.275810
4 2 1.495120 0.1468700 -3.258340
4 3 1.544150 0.1782300 -3.241110
4 4 1.592220 0.2136500 -3.223780
4 5 1.639160 0.2529300 -3.206490
5 1 1.494220 -0.4821000E-01 -3.420160
5 2 1.550940 -0.2677000E-01 -3.401440
5 3 1.607360 -0.3000000E-04 -3.382810
5 4 1.663250 0.3146000E-01 -3.364200
5 5 1.718400 0.6741000E-01 -3.345680
6 1 1.523800 -0.2212400 -3.564410
6 2 1.586700 -0.2061600 -3.544400
< 3 1.649970 ~0.1850500 -3.524610
5 4 1.713260 -0.1587900 -3.504630
6 5 1.776310 -0.1274600 -3.484840
7 1 1.534060 -0.3968400 -3.708610
7 2 1.602350 -0.3891100 -3.687400
7 3 1.671760 -0.3749500 -3.666170
7 4 1.741880 -0.3548900 -3.645060
7 5 1.812340 -0.3294500 -3.623940
8 1 1.525250 -0.5730800 -3.852910
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.597910
.672650
. 748860
.826090

. 497600
.573590
.652680
. 734090
.817310

99

.5737500
.5673700
.5547300
.5362900

.7483300
. 7580900
.7604100
. 7562000
. 7457900

.830330
.807900
. 785470
.763030

.997150
.973390
.949680
.925870
.902150
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* TABLE B. 6 CORRECTED MACHINE TOOL SETTINGS (CONCAJE SIDE) *

....................

Fede et ek Foav e s s ot et s s S ot s s Sl s S S s s e S o e e S e e de s st e e e e e

BASIC TILT ANGLE : CI = 0.4360375 radians
SWIVEL ANGLE : Cl = 6.042021 radians
MACHINE ROOT ANGLE : RGMAIM = 6.202894 radians
CRADLE ANGLE : QC = 1.573228 radians
RADIAL SETTING : SR = 110.4463 mm
SLIDING BASE : DELTB = 14.82000 mm
MACHINE CENTER TO BACK:DELTA = -3.970493 mm
BLANK OFFSET : EM = -35.45049 mm
CUTTING RATIO : FM1 = 0.3230215

CUTTER POINT RADIUS : RCF = 113.0300 mm
CUTTER BLADE ANGLE : PHIVIC

0.2443461 radians

o oo ale wls ale oTe of ole P % .‘_ Yevedr & P PR e P e i
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oo dede ettt W 1554 b

BLANK OFFSET: EM =-0.8704924 mm
MACHINE CENTER TO BACK: DELTA =-0.5540259 mm
SLIDING BASE : DELTB = 0.0000000E+00 mm
MACHINE ROOT ANGLE : RGMAIM =-0.2647799E~01 radians
RADIAL SETTING : SR = 0.7803197 mm
CRADLE ANGLE : QC = 0.7054806E-02 radians
SWIVEL ANGLE : CJ = 0.4136530E-01 radians
TILT ANGLE : CI = 0.2563208E-01 radians

100
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ot et oo t A Tl e st
TABLE C.!l. BLANK DATA OF HYPOID PINION *
Fode T s et s e s e e st e e S e s e e e s e e S e e s e e e e e e ok

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radians
PITCH DIAMETER: 88.22 mm
OUTSIDE DIAMETER: 103.96 mm
PITCH ANGLE: 0.32055 radians
FACE ANGLE: 0.41480 radians
ROGT ANGLE: 0.30136 radians
MEAN SPIRAL ANGLE: 0.84677 radians
FACE WIDTH: 38.30 mm

WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.

'''''''''''''''''' e ote Ve e vt S w Sl S v v Sl vl ol ofe ol s st at il ot ate ot W St Ll e ot e b W Lt
I

BASIC TILT ANGLE : CI = 0.3761899
SWIVEL ANGLE : CJ = 5.766247
MACHINE ROOT ANGLE : RGMAIM = 6.233736
CRADLE ANGLE : QC = 1.436986
RADIAL SETTING : SR = 114.0236
SLIDING BASE : DELTB = 23.87000
MACHINE CENTER TO BACK:DELTA = 3.280000
BLANK OFFSET : EM = -40.12000
CUTTING RATIO : FM1 = 0.3020446
CUTTER POINT RADIUS : RCF = 114.9350
CUTTER BLADE ANGLE : PHIVIC =-0.5410521
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Table C.3 Coordinates of Theoretical Surface (Convex Side)
(represented in Sm (Fig. 3.2))

Yo Y6 3t e e Fe Se Te e 9 o5 1 S v S 5t ¥ e Je ¥ It Ve ¥ 9% I ¥e % 5 7% ¥ 7 3% 5k % Fe e v e 72 %% Fe v oc o v Fe ve o % 7

XT (inch) YT (inch) ZT (inch)
1 1 1.135060 0.6650000 -2.844010
1 2 * 185910 0.6562700 -2.830500
1 3 1.238650 0.6422500 -2.817000
1 4 1.292890 0.6229000 -2.803490
1 5 1.348280 0.5981000 ~-2.789990
2 1 1.247700 0.5418800 -2.988040
2 2 1.302600 0.5245800 -2.973260
2 3 1.358830 0.5009600 -2.958480
2 4 1.415930 0.4709600 -2.943690
2 5 1.473440 0.4345000 -2.928910
3 1 1.345050 0.4062200 -3.132080
3 2 1.402710 0.3794500 -3.116020
3 3 1.460940 0.3453500 -3.099950
3 4 1.519180 0.3039000 -3.083890
3 5 1.576860 0.2550400 -3.067830
4 1 1.426350 0.2598200 -3,276110
4 2 1.485380 0.2228700 -3.258770
4 3 1.543990 0.1776600 -3.241430
4 4 1.601550 0.1242000 -3.224090
4 5 1.657360 0.6251000E-01 -3.206760
5 1 1.490940 0.1043990 -3.420150
5 2 1.549840 0.5674000E-01 -3.401530
5 3 1.607160 0.0000000E+00 -3.382910
5 4 1.662140 -0.6574000E-01 -3.364290
5 5 1.713980 -0.1403800 -3.345680
6 1 1.538250 -0.5840000E-01 -3.564180
6 2 1.595460 -0.1170800 -3.544290
6 3 1.649730 -0.1855400 -3.524390
6 4 1.700200 -0.2635800 -3.504500
6 5 1.745960 -0.3510200 -3.484600
7 1 1.567790 -0.2269300 ~-3.708220
7 2 1.621680 -0.2967900 -3.687040
7 3 1.671120 -0.3769300 ~-3.665870
7 4 1.715140 -0.4670500 -3.644700
7 5 1.752700 -0.5668300 -3.623520
8 1 1.579130 -0.3995700 ~-3.852250
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.628050
.670840
. 706440
.733720

.571890
.614130
.648460
.673700
.688670
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-0.4805600
-0.5721400
-0.6738600
~-0.7852500

-0.5747300
-0.6666000
-0.7691300
-0.8817200

-1.003710

.829800
.807350
. 784900
. 762440

.996290
.972560
.948830
.925100
.901380




Table C.4 Projections of Surface Unit Normal
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(represented in Sm (Fig. 3.2))

.........

XN (inch)

. 2346000
.3030000
. 3662000
. 4255000
. 4816000

[e= e Nl o e ]

.3421000
.4113000
. 4747000
.5336000
.5887000

D000 O0

.4408000
.5093000
.5714000
.6283000
.6809000

QOO0 QO

.5301000
.5964000
.6558000
. 7094000
. 7580000

[e> B e en B e B e ]

.6097000
.6725000
.7278000
. 7768000
.8200000

SO ODO

.6792000
.7372000
. 7873000
.8305000
.8674000

QOO OO O

. 7386000
. 7906000
.8343000
.8707000
.9003000

OO0 QOO

0.7874000
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.8427000
.8339000
.8201000
.8021000
.7803000

QOO0 0

.8087000
. 7899000
. 7664000
. 7389000
.7076000
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.7622000
.7335000
. 7005000
.6636000
.6232000

OO0 O0OO

.7050000
. 6666000
.6245000
.5788000
.5297000

SO0 OO

.6386000
.5911000
.5403000
. 4864000
.4294000

OO0 O

.5646000
.5086000
. 4498000
.3884000
.3244000

OO OO0

.4842000
.4203000
.3543000
.2863000
.2163000

OO OOO

0.3985000

(Corvex Side)

ZN (inch)

. 4846000
. 4614000
.4397000
.4190000
.3990000

.4785000
.4549000
.4327000
.4114000
.3908000

.4743000
.4502000
.4276000
. 4059000
.3848000

.4712000
. 4471000
.4243000
.4022000
.3807000

. 4695000
.4454000
.4224000
.4001000
.3783000

. 4689000
. 4448000
.4217000
.3993000
.3774000

. 4692000
. 4453000
.4223000
.3999000
.3779000

.4703000
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.8325000
.8690000
.8976000
.9190000

.3:58000
.8630000
.8913000
.9115000
.9240000
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.3276000 -0
.2554000 -0
.1817000 -0
. 1067000 -0
.3086000 -0
.2317000 -0
. 1542000 -0
. 7600000E-01 -0
.2900000E-02 -0.

. 4467000
. 4239000
. 4015000
.3795000

.4721000
. 4489000
. 4264000
. 4042000

3823000
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Table €C.5 Coordinates of Real Tooth Surface (Convex Side)
(represented in Sm (Fig. 3.2))

----------------

XM (inch) YM {inch) ZM (inch)
1 1 1.134810 0.6641100 ~-2.843490
1 2 1.185630 0.6554900 -2.830070
1 3 1.238350 0.6416000 -2.816650
1 4 1.292550 0.6222500 -2.803160
1 5 1.347930 0.5975300 -2.789700
2 1 1.247430 0.5412600 -2.987670
2 2 1.302300 0.5240200 -2.972940
2 3 1.358550 0.5005100 -2.958230
2 4 1.415620 0.4705300 ~-2.943460
2 5 1.473150 0.4341400 -2.928720
3 1 1.344770 0.4057300 -3.131770
3 2 1.402440 0.3790600 -3.115780
3 3 1.460690 0.3450500 -3.099770
3 4 1.518920 0.3036200 -3.083730
3 5 1.576620 C.2548100 ~3.067690
4 1 1.426120 0.2595100 -3.275900
4 2 1.485140 0.2226000 -3.258590
4 3 1.543780 0.1774500 -3.241290
4 4 1.601460 0.1241300 -3.224050
4 5 1.657190 0.6240000E-01 -3.206670
5 1 1.490820 0.1042600 -3.420050
5 2 1.549730 0.5665000E-01 -3.401460
5 3 1.607140 -0.1000000E-04 -3.382900
5 4 1.662070 -0.6578000E-01 ~-3.364260
5 5 1.713940 -0.1404000 ~-3.345660
6 1 1.538180 -0.5846000E-01 -3.564130
6 2 1.595550 -0.1170200 -3.544340
6 3 1.649770 ~0.1855100 -3.524410
6 4 1.700370 -0.2635000 -3.504580
6 5 1.746120 ~0.3509600 ~3.484670
7 1 1.567970 ~0.2268100 ~3.708330
7 2 1.621870 -0.2966800 ~3.687150
7 3 1.671390 -0.3768100 -3.666010
7 4 1.715480 -0.4669400 ~3.644850
7 5 1.753020 -0.5667500 ~3.623650
8 1 1.579410 -0.3994300 ~3.852420
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.628470
.671260
. 706890
.734280

.572400
.614710
.649080
.674320
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. 4803900
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.6737700
.7851800

.5745400
.6664400
. 7690200
.8816700

-1.003710
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.830030
.807550
.785100
.762670

.996570
.972860
.949120
.925370
.901660
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TABLE C.6 CORRECTED MACHINE-TOOL SETTINGS (CONVEX SIDE) *

32373 WA ST R

BASIC TILT ANGLE : Cl = 0.3712125 radians
SWIVEL ANGLE : Cl = 5.768892 radians
MACHINE ROOT ANGLE : RGMAIM = 6.23686]1 radians
CRADLE ANGLE : QC = 1.436096 radians
RADIAL SETTING : SR = 113.6455 mm

SLIDING BASE : DELTB = 23.87000 mm
MACHINE CENTER TO BACK:DELTA = 3.767510 mm
BLANK OFFSET : EM -39.63248 mm
CUTTING RATIO : FM1 0.3020446

CUTTER POINT RADIUS : RCF 114.9350 mm
CUTTER BLADE ANGLE : PHIVIC =-0.5410521 radians

................................

o3t v Yot Y e e v e S e e e e de e e e e Je e e e de ke s Yo Yost s e e e e vk
* TABLE C.7 CORRECTIONS OF MACHINE-TOOL S

BLANK OFFSET: EM 0.4875103 mm
MACHINE CENTER TO BACK:DELTA = 0.5769074E-01 mm
SLIDING BASE : DELTB = 0.0000000E+00 mm
MACHINE ROOT ANGLE : RGMAIM 0.3125239E-02 radians
RADIAL SETTING : SR =-0.3780939 mm
CRADLE ANGLE : QC =-0.8908187E-03 radians
SWIVEL ANGLE : CcJ 0.2644968E-02 radians
TILT ANGLE : Cl =-0.4977365E-02 radians

1
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